If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+2y-27=0
a = 2; b = 2; c = -27;
Δ = b2-4ac
Δ = 22-4·2·(-27)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{55}}{2*2}=\frac{-2-2\sqrt{55}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{55}}{2*2}=\frac{-2+2\sqrt{55}}{4} $
| 5w-68=w | | 44+36x=180 | | 5^(x-4)=125 | | 4u-44=2u | | 2(x+4)-2(x+1)=56 | | (x-4)/3=8 | | 6w-8=w+17 | | 2x+4-2x+1=56 | | 6x+1=2x+11 | | 5u-56=u | | 5x+7x+20=90 | | 57+25=8y+1 | | 14n-38=12 | | 5y+10-8y=-8 | | x=-16^2+90+7 | | y=-16^2+90+7 | | B=-18.53t^2+975.8t+48140 | | 2/3(6x-15)=4x+2 | | -5=d4+3 | | 20n+4=2(10n+2) | | 2x+2x-1=48 | | 9^(x-6)=121(8^x) | | x*0.471632=0.137729 | | 6n-6=6n-6 | | (9x+5)+(9x+5)+(13x+15)=150 | | 5÷x-6=- | | 4n+5=n-4 | | 8x2-56x=0 | | 5÷x-6=-17 | | -3(3n+15)=18 | | 7(t-5)+5t=6(2t+3)-12 | | 17-5(2x-9)=-(-6x+1-)+4 |